

Mars Exploration

Roger Gibbs

Mars Exploration Program

Jet Propulsion Laboratory

California Institute of Technology

MARS MISSIONS

Overview of Mars Exploration

Scientific Findings:

- Mars was once habitable—was it ever inhabited?
- Water flowed on and beneath the Mars surface intermittently over the first half of the planet's history.
- Mars has lost ≥ 70% of its ancient atmosphere and most of its water.
- Mars has resources: Ice, hydrated minerals, CO₂.

Engineering:

- Improved delivery systems bring heavier spacecraft more precisely to the surface.
- Surface mobility brings access to a diverse environment.
- Autonomy (e.g., visual odometry) increases safe driving range.

Operations:

- Orbital relay infrastructure enhances data return from surface assets.
- Long duration missions enhance overall mission return.
- Complex operations (e.g., drilled samples analyzed onboard) have been conducted.

Evolving Rover Capability

Pathfinder Sojourner: First Rover on Mars

Landed July 4, 1997 Ares Vallis, Mars •An ancient flood channel Solar powered vehicle Communicated with Earth thru Lander Alpha Proton X-Ray Spectrometer

MER – 2nd Generation Mars Rover

Spirit and Opportunity BY THE NUMBERS

6 YEARS
lifespan

124,838 raw images

4.8 traveled

30 DEGREES steepest slope

The 2018 Planet Encircling Dust Event

Curiosity – 3rd Generation Mars Rover

Curiosity Lands at Gale Crater

Mars 2020 – Gathering Samples for Possible Return

Flood channel

M2020 landing in Jezero Crater in 2021

Mars 2020 will carry ~40 total sample tubes with ~20 to be filled in a 1-Mars year primary mission

Sample

Return

Tube

Mineralogy from MRO CRISM NASA / JPL / JHUAPL / MSSS / Brown U.

MOXIE: Mars
Oxygen In-Situ
Utilization

Experiment

Artist's Conception: M2020 on the Floor of Jezero Crater

Notional Mars Sample Return Architecture

- "Focused" Sample Return: Three flight elements plus one ground element
 - Capitalize on existing assets and past experience
 - Focused scope on 2011 Decadal Survey top flagship priority
 - Payloads focused on MSR objectives; may be secondary launch opportunities
 - Build on technology investments (e.g., Mars Ascent Vehicle)
 - Leverage partnerships (e.g., the recent NASA-ESA Statement of Intent on MSR)

Sample Caching Rover

(Mars 2020)

Sample acquisition and cachina

Sample Retrieval Lander

Fetch Rover

Orbiting Sample container (OS)

Mars Ascent Vehicle

Earth Return Orbiter

Rendezvous and On-Orbit Capture System

> Earth Entry Vehicle

Mars Returned Sample Handling

- •Sample Receiving Facility
- Curation
- •Sample science investigations

Flight Elements

Ground Element

Looking Ahead

 Continue the ongoing scientific exploration of Mars while preserving the infrastructure needed to support future missions

- Get Mars 2020 launched and safely operating on Mars
- Support the next steps in the potential Mars Sample Return campaign
- Provide information for the design and operations of future missions supporting exploration by humans on Mars

